
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Password Strength Analysis Against Brute Force and

Dictionary Attacks

Shifa Salsabiila 13519106

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13519106@std.stei.itb.ac.id

Abstract—The dilemma of choosing strong, yet hard-to-

remember passwords or weak but easy-to-remember passwords

has long haunted internet users. This paper shows that many

people tend to reside to choosing the latter option. This fact is

concerning and is an indicator that many internet users today are

still lacking the awareness of the dangers of a weak password and

how they are at risk to it. This paper explains how brute force

attacks and dictionary attacks are executed as direct

implementations of the brute force algorithm and regular

expressions. A strong password should be tested against and be

able to hold off all kinds of attacks.

Keywords—password strength, password cracking, brute force

attack, dictionary attack, regular expressions

I. INTRODUCTION

Passwords has been and still is the main authentication
mechanism for most websites and applications. Although it
works, it is not completely flawless. In the past, there has been
many incidents related to password cracking and data breach. It
is highly encouraged that internet users start putting more
thought and concern into choosing stronger passwords for their
accounts. This includes a password of length greater than 8
characters, containing multiple assortments of lowercase and
uppercase letters, numbers, and symbols, and for it not to be
used for multiple accounts. A strong password is like a double-
sided sword. On one side, it is good because it is very hard for
crackers to guess, but on the other side, it is also more difficult
to remember.

As this is the case, a lot of people tend to reside to either
choosing weak passwords that are easier to rememeber,
especially as they start owning more accounts and having
different passwords for each and every one of them, or
choosing a single strong universal password to use for all their
accounts. It is surprisisng how many people still use common
passwords, such as “password” or “password1” for their
accounts. Raising awareness regarding the importance of
password strength and how easy it is to crack a weak password
should be conducted more often. The consequence of a
password breach for a user may lead to a loss in time, money,
personal information, and in extreme cases, possibly even a
person’s physical safety.

II. BRUTE FORCE ALGORITHM

Brute force algorithm is a problem solving metehod that is
known to be able to solve almost any problem. However, its
approach is considered inefficient, as it takes up a lot of
computation time. A brute force algorithm will attempt to try
out every possible solution to a problem. Theoretically, if a
certain problem has a known set of solution range that can be
enumerated and written out as a set of rules, then that problem
can be solved using a brute force approach.

A problem that comes along the brute force algorithm is
that most of the time, for larger problems, it is not
implementable. Perhaps in theory, a certain problem can be
solved using the brute force algorithm, however today, most
computers are not powerful enough to carry out the algorithm
for larger problems within a reasonable amount of time.
Therefore, this algorithm is rarely used to solve problems that
have other known more efficient solutions that can be used to
solve them.

An attempt to slightly improve the brute force algorithm,
while still implementing the same concepts is to add heuristic
rules to the set of possible solutions that is completely
dependent on each specific problem. This is done to further
minimize the set of possible solutions, hence also minimizing
the number of solutions that needs to be checked.

The time complexity of the brute force algorithm highly
depends on the problem. Two of the most popular problems
that can be solved using brute force algorithm is the Knapsack
problem and the assignement problem. The time complexity
for the Knapsack problem using a brute force approach is O(2n)
and for the assignment problem, it is O(n!). The approach used
to solve these two problems is later adapted to solve many
other problems, including the password cracking method that
will be further discussed in this paper.

III. REGULAR EXPRESSION

Regular expression is a sequence of characters that is used
to denote a certain pattern. It is usually used to find matches of
a pattern within a larger text. Below is a summary of the
common regular expression syntax.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

i. Predefined Characters

Expression Description

. Any character except newline

\d Any digit [0-9]

\w Any word character [a-zA-
Z0-9_]

\s Space character

\D Any non digit characters

\W Any non word characters

\S Any non space characters

 Table 3.1 Regular expression – predefined characters

ii. Characters

Expression Description

[abc] a, b, or c

[^abc] Any character except for a, b,
and c

[a-z] Any lowercase alphabet
characters

[a-zA-Z] Any lowercase and uppercase
alphabet characters

[0-9] Any numerical digit

(abc) The pattern ‘abc’ in that order

[a-z&&[^s-u]] Any lowercase alphabet
charater except s, t, and u.

 Table 3.2 Regular expressions - characters

iii. Boundary Matchers

Expression Description

^ Start of line

$ End of line

\b Word boundary

\B Not a word boundary

\A Beginning of string

\G Beginning of string or end of
previous match

\Z End of string

?= Look ahead

 Table 3.3 Regular expressions – boundary matchers

iv. Quantifiers

Expression Description

* Zero or more appearance

+ One or more appearance

? Zero or one appearance

{n} Exactly n appearance

{n, m} Appearance between n to m
times (inclusive)

{, m} Appearance at most m times

{n, } Appearance at least n times

 Table 3.4 Regular expressions – quantifiers

IV. DATASET ANALYSIS

In the past, there have been several cases of data breach
which resulted in multiple account passwords being released to
the public. This is especially bad when it happens to companies
who store their user passwords in plain text, not encypted using
any hashing algorithms. A major data breach that may have
changed the world of password cracking was one that occurred
in 2009 to a company called RockYou.

RockYou started off as a company that provides slideshow
services for other websites, but gained its major success in
becoming a widget provider for many other multinational
companies. It was known to be the main widget maker for
facebook, as rated by the number of total installations. In 2009,
the company experienced a data breach, exposing more thatn
32 million unencrypted user account passwords from the
service itself and also from companies that use its services such
as Facebook and MySpace. The password list contained over
14 million lines of real unique passwords. The sheer size of this
list made it the largest known password list to exist at the time.
To make it worse, the current CEO of the company failed to
inform the public of this incident and thus remained hidden
until years later. This incident provided a massive new list of
passwords that can be made of use by crackers to enhance their
cracking success rate.

Using regular expressions, this paper has summarized some
of the most common patterns being used in passwords based on
the RockYou password list.

regex = "^[A-Z]+$" #To be changed for

different tests

pattern = re.compile(regex)

found = 0

lines = 0

for line in open("rockyou.txt",

errors="ignore"):

 for match in re.finditer(pattern,

line):

 found += 1

 lines += 1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

 The purpose of this block of code is to test out various
regular expression patterns to see which yields the highest
percentage result when being tested against the RockYou
password list. The given regex variable above filters only
passwords containing all uppercase alphabet characters of any
length and nothing else. When testing, the regex variable was
altered multiple times to test for different patterns as well, such
as the use of combiantions between lowercase, uppercase
alphabets and numeric characters, among many others.

The results are summarized in the table below:

No regex Percentage Yield

1 ^[a-z]+$ 25.977%

2 ^[A-Z]+$ 1.603%

3 ^[0-9]+$ 16.360%

4 ^[a-z0-9]+$ 84.687%

5 ^[A-Z0-9]+$ 20.803%

6 ^[A-Za-z]+$ 28.690%

7 ^[A-Za-z0-9]+$ 92.906%

8 ^[A-Za-z0-9]{,8}$ 51.068%

9 ^[a-z]+[0-9]+$ 32.906%

10 ^[A-Za-z]+[0-9]+$ 37.224%

11 [A-Za-z]+\d\d\d\d 13.419%

12 ^(?=.*[A-Z])
(?=.*[a-z])
(?=.*[0-9])
(?=.*[^A-Za-z0-9])

3.036%

Table 4.1 Common patterns from RockYou password list

Another analysis was done to see the average length of the
passwords from the RockYou list.

totalLength = 0

lines = 0

for line in open("rockyou.txt",

errors="ignore"):

 totalLength += len(line)

 lines += 1

 This block of code yielded that the average length of
passwords from the RockYou password list is 9.74846
characters. From these results, there are several points that can
be concluded about the common patterns and trends in user
passwords. This average is not bad, being judged by solely the
password length. Longer passwords do take greater time to
crack, as will be explained in more detail later.

However, password length alone cannot determine the
strength of a password. As mentioned earlier, a good password
should contain various characters within them, and ideally, this
would include a combination of lowercase letter, uppercase
letter, number, and a symbol. Based on the test results using
regex 12 in Table 4.1, only 3.036% of the passwords from the
list is considered strong.

Referring to Table 4.1, regex 1 shows that around a quarter
of the passwords from the list only consists of lowercase
letters. This type of password is considered the weakest type
and is very easy to crack. The fact that over a quarter of
passwords from the list fall into this category is concerning,
because that is a large portion of people and hence shows that
the awareness of password vulnerability is still not clear to
many people. Below is a more descriptive venn diagram of the
specific distribution between common password patterns
containing lowercase, uppercase alphabets, and numeric
characters.

Fig 4.1 Venn diagram of common password pattern

As it can be seen from the venn diagram, most passwords
contain either only lowercase letters, only numbers, or only a
combination of lowercase letters and numbers. Unfortunately,
today, with all the dictionaries available, this is not enough to
be a strong password.

Another pattern that was tested out was regex 11. This
pattern yielded around 13%, which is quite significant for a
specific pattern. This pattern denotes a series of letters
followed by 4 numeric digits at the end. This is a common
password pattern, as people tend to use their name or a word
followed by a date as a password and its popularity makes it a
vulnerable password as well, despite the possibility that it
contains a combination of lowercase, uppercase letter, and a
numeric digit.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

V. PASSWORD CRACKING METHODS

A. Brute Force Attack

 As can be seen from its name, a brute force attack makes
use of the brute force algorithm. How it works is that it tries
out every possible solution until it has found a match or it has
checked all of the possible solutions. In order to execute a brute
force attack, first of all, one must define the set of possible
solutions, usually denoted using regular expressions or other
scripts. This set of possible solutions can have rules as general
as “check for all combinations of lowercase letters, upperrcase
letters, and numbers” ^[a-zA-Z0-9]+$ or can be as specific

as “check for all combinations of strings containing a series of
lowercase or uppercase letters followed by 4 digits, with a
minimum length of 6 and a maximum length of 8 characters”
([A-Za-z]+\d\d\d\d){6,8}.

 The attempt to make the possible solution smaller by
applying certain rules is the example of implementing
heuristics in a brute force algorithm. The time complexity for a
brute force attack depends on the heuristic rules applied, but is
in average O(mn), where m is the number of characters being
checked and n is the length of the string.

 Consider the following example: A brute force is trying to
be done with the target password being of length 4 and only
consisting of lowercase letters. Hence, we can get the
maximum amount of tries to be 264, as there are 26 characters
of lowercase letters and there are 4 slots. This means that every
slot can be filled in with a single character from the alphabet
and repetitions are allowed. All the possible cobinations of the
4 letters form the possible solution set.

Fig 5.1 Combination for brute force algorithm illustration

 From this, it can be derived that the brute force attack
method speed is highly dependent on m and n. Here, n has a
greater effect in the time escalation, which means that in
general, making a password longer makes it harder to crack
than adding more symbols to it. Below is a representation of
the number of checks that has to be done based on the number
of characters and the length of the string.

 Possible characters

Length [a-z] [a-zA-Z] [a-zA-Z0-9]

0 1 1 1

1 26 52 62

2 676 2704 3844

3 17576 140608 238328

4 456976 7311616 14776336

5 11881376 380204032 916132832

6 308915776 1.9771E+10 5.68E+10

7 8031810176 1.0281E+12 3.5216E+12

8 2.0883E+11 5.346E+13 2.1834E+14

9 5.4295E+12 2.7799E+15 1.3537E+16

10 1.4117E+14 1.4456E+17 8.393E+17

Table 5.1 Number of checks comparison

In passwords of longer lengths, the role of heuristics
become more important. Take a password of length 8 for
example. Without heuristics, if we were to attempt a brute
force attack that assumes a password of length 8 and containing
lowercase letters, uppercase letters, and numbers, from Table
5.1, it can be derived that the total number of checks is at
2.1834E+14 checks at maximum. However, this approach
assumes that lowercase letters, uppercase letters, and numbers
have equal probabilities of occupying all slots. However, in
reality, based on social analysis, we have gathered up
information that people tend to start their passwords with
uppercase letters, followed by several lowercase letters (in this
case 3, because we are searching for a string of length 8) and
ending with a date, consisting of 4 numbers.

With this assumption in mind, we can construct a narrower
possible solution set with the regular expression

^[A-Z]([a-z]{3})\d\d\d\d$.

The total number of checks for this pattern is:

26 × 263 × 104 = 456976000

As it can be seen, this solution is around 100 million times
faster. When designed correctly, a heuristic rule can greatly
improve the search of a brute force algorithm.

The speed at which passwords are being cracked using the
brute force algorithm also very strongly depends on the
computer the cracking program is being run on. A computer
running on multiple GPUs will be able to crack passwords at a
much higher rate than one running on a single CPU. To give an
approximation of password cracking time, suppose a computer
is capable of running 1 million checks per second. With this, to
check a password consisting of only lowercase letters of length
5, the computer only needs 11 seconds. However, when the
password length increase to 10, it will now need 1.4117E+8
seconds, or equivalent to 39213 hours or 1633 days. Hence,
this method of password cracking becomes unrealistic for
passwords of character length greater than 8.

B. Dictionaries

As it can be seen from the previous section, the brute force
attack is not at all effective against lengthy passwords or
passwords with a greater variation of characters within them.
Hence, exists another password cracking method, that is to use
dictionaries. Dictionaries in password cracking is simply a list
of known common passwords, usually a compilation of
passwords from data breaches. In fact, the RockYou password

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

list that was discussed in previous chapters can actually be used
as a dictionary in dictionary attacks.

A dictionary attack works by first of all trying out all the
passwords in the dictionary to see if a match is found.
Generally speaking, this part of a dictionary attack is also an
implementatin of the brute force algorithm, only here, the
possible solution set is all the words or strings within the
dictionary. However, if no match is successfully found by
matching all the strings exactly as they are, certain
modifications are done towards the strings in the dictionary,
and the testing process is repeated. These modifications are
carried out bsaed on certain rules that had been predefined
prior to the attack. These rules can also be seen as heuristic
rules that in this case attempts to expand the possible solution
set.

It is very common for people to substitute certain characters
for other characters in passwords. Some of the most common
substitutions include replacing an ‘A’ with ‘@’ or ‘4’, or
replacing an ‘E’ with ‘3’. A different rule may be to capitalise
the first letter of each string. In dictionary attacks, it is very
easy to, with the help of regular expressions, implement these
substitution rules. Therefore, using the password “p@ssw0rd”
instead of “password” does not actually make the password any
more secure, because of how easy it is to replace the latter with
the implementation of the right rules. If the first round of
parsing fails to yield a match, then new parses will be executed
with the implementation of these different rules.

A comprehensive dictionary coupled with a good rule set
can be aa very effective method of password cracking,
considering a lot of user account passwords still follow a
common pattern that can be or has been translated into a rule in
a rule set.

VI. SUGGESTIONS FOR PASSWORD SECURITY

A. Suggestions for Developers

As passwords are still the main authentication system until
today, developers providing such authentication system for
their clients should treat it with utmost care. Learning from past
experiences, such as the RockYou incident, developers should
know not to store user passwords in plain text. Passwords
should always be hashed prior to storing. Hashing is the
process of transforming a text into another value of fixed size.
It is a one-way process, meaning that once a password has been
hashed, then there is no way to return it to its original value.
The hashing function is constant, in a sense that the same input
passed through the same hashing function will always produce
the same output. Therefore, upon logging in, the string that the
user entered in the password field will be passed into the same
hashing function and the output will be compared to the one
that is stored in the database. Hence, not even the administrator
has access to see any user passwords.

Hashing has two main benefits. The first one, is that if a
data breach were to happen and user information, including
passwords, get exposed to the public, it will still be in a hashed
form, meaning that unless it iss cracked, then it will not be very
useful to anyone. The second one is that it increases the time

required when an attack is happening. Good hashing functions
are designed to be slow. This is because if for example, a data
breach occurred to a database storing hashed passwords, then
to crack the passwords, one must use one of the methods
above, with the addition of passing it through the hashing
functions before comparing the strings. Again, hashing rate
depends on both the hashing function and CPU or GPU
strength of a computer.

For a rough comparison, here is a couple of hashing
algorithm to hash rate data on a PC with two ATI Radeon 7970
graphic cards.

Hashing Algorithm Rate (Hashes/second)

MD5 23070.07 M/s

SHA-1 7973.8 M/s

SHA-256 3112.0 M/s

SHA-512 267.1 M/s

NTLM 44035.3 M/s

Table 6.1 Hash rate comparison

From Table 6.1, it can be seen that hashing algorithms such
as NTLM or MD5 are not very good, because they have a high
hash rate. This means that a computer would be able to produce
a lot more hashes in a short amount of time under these two
hash functions. As of today, when developing an authentication
system, developers should choose hashing algorithms such as
SHA-512. When hashing singular strings, the difference
between all of these functions are irrelevant, however only
when hashing millions or billions of strings will the differences
matter.

B. Suggestions for Internet Users

It is not only the developer’s job to give an effort towards
the security of passwords. As users, it is important to be able to
choose strong passwords. There have been many research on
what a strong password should look like. It is important to
judge a password strength based on its vulnerability towards
any cracking method. For example, the password
“passwordpassword”, even though only consists of lowercase
characters, it is of length 16, which means that it is probably
safe against a brute force attack. However, such password is
very common, that it might be one of the weakest passwords in
a dictionary attack. Passwords such as “H3//0vv0r/d” might
also seem like a password that would stand strong against a
brute force attack due to its uses of various symbols. However,
a dictionary attack with a good set of rules can also break this
password quite easily.

A good password first of all should not have any ties to a
person’s personal informarion, such as name or date of birth.
This is to avoid it being vulnerable to social engineering.
Including various symbols and characters is definitely good, as
it will make the password stronger against brute force attacks.
However, if implementing substitution of characters, make sure
to use o'nes that is not commonly used. For example, instead of
using a ‘3’ to substitute the letter ‘E’, maybe use it to substitute

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

the letter ‘D’ or use a different symbol to substitute the letter
‘E’ that has not become common knowledge to the public.

Another approach to creating strong passwords is to simply
make it really long, without really having to worry about the
character assortment within it. A good way to choose such
password iss by appending 4 or 5 words together. The key here
is to use words that would not normally go together, otherwise
it might still come up quite frequently in a dictionary attack.
An example of such password would be
“donkeyalgorithmwaterstsore”. Though it might not look like
it, this is actually a pretty strong password, as it is very long,
therefore it is safe to assume that it is good agains brute force
attacks. It is also most likely sasfe against dictionary attacks,
because these 4 words do not commonly go together and until
today, crackers probably do not have a specific rule set up yet
to crack passwords designed this way.

The last criteria for a good password is that it should never
be reused. A different password for every account may reach a
point where it is unrealistic for people to remember everything
without having to write it down, as it is also a very bad idea to
write down passwords. Luckily, today we are presented with
what is known as a password manager. Password managers is a
digital vault that stores a user’s password, only accessible using
a master password. The password manager also provides a
password generator that will create strong, random, unique
passwords everytime a sign up is done. The password manager
also keeps track of what password belongs to what site so that
users no longer have to remember or even know what their
passwords are.

VII. CONCLUSION

The subject of password strength should be taken more
seriously by most people. As analysed in this paper, taken from
the RockYou password list, the results show that majority of
passwords cannot be considered secure and strong against
password cracking attacks. It was shown that brute force
attacks are most effective against password of short length and
a low range of variety of characters, whereas a dictionary
attack is most effective against common passwords, regardless
of its length. In order to create a secure password, it must be
able to withstand all forms of attacks.

This paper suggests that for developers of websites and
applications that use a password authentication system to pay
more attention to the storage mechanism of the user passwords.
This includes choosing the most secure hashing algorithm and
to never store the passwords in plain text. As for users of these
sites and applications, it is recommended to choose a password
that is long, uncommon, and consists of various assortment of
characters. A user must also never use the same password for
multiple accounts and should consider using a password
manager for easier access to their passwords.

VIDEO LINK

Please kindly check this video for further explanation on the
topic: https://youtu.be/8UNfnnxyNYc

ACKNOWLEDGMENT

The author would like to thank first of all, God for the

guidance throughout the process of writing this paper. The

author would also like to thank the lecturer of ITB Algorithm

Strategies class 02 IF2211 Dr. Nur Ulfa Maulidevi, S.T.,

M.Sc. and Dr. Ir. Rinaldi Munir, MT. for the comprehensive

website that the author has referred to multiple times. Not to

forget, the author would also like to thank her family and

friends who have given constant support throughout the entire

semester that gave the author the strength and ability to

complete it.
A friendly note to anyone reading this, please make sure to

reevaluate your current passwords and make sure it is far from

being crackable. Also please make sure to stay healthy and

always follow the health protocols amidst this pandemic.

REFERENCES

[1] Bosnjak, L., et al. “Brute-Force and Dictionary Attack on Hashed Real-

World Passwords.” 2018 41st International Convention on Information

and Communication Technology, Electronics and Microelectronics

(MIPRO), 2018, doi:10.23919/mipro.2018.8400211.
[2] Charras, Christian, and Thierry Lecroq. “Brute Force Algorithm.” Brute

Force Algorithm, www-igm.univ-mlv.fr/~lecroq/string/node3.html.

[3] Dell’Amico, Matteo, et al. “Password Strength: An Empirical Analysis.”

2010 Proceedingss IEEE INFOCOM, 2010,

doi:10.1109/infcom.2010.5461951.
[4] Hu, Gongzhu. “On Password Strength: A Survey and Analysis.”

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, 2017, pp. 165–186., doi:10.1007/978-

3-319-62048-0_12.
[5] Kaspersky, Kapersky. “Brute Force Attack: Definition and Examples.”

Www.kaspersky.com, 13 Jan. 2021, www.kaspersky.com/resource-

center/definitions/brute-force-attack.

[6] Mozilla. “Regular Expressions - JavaScript: MDN.” JavaScript | MDN,

developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Regular_Expressions.

[7] Munir, Rinaldi.”http://informatika.stei.itb.ac.id/~rinaldi.munir/”

[8] Triella, “Weak Passwords Are Still the Biggest Security Risk.” Triella,

24 Sept. 2018, www.triella.com/weak-passwords/.

[9] Thriveni, C.A., and K. Madhavi. “A Secure Authentication Scheme
against Password Guessing Attacks.” International Journal of Computer

Sciences and Engineering, vol. 6, no. 6, 2018, pp. 162–166.,

doi:10.26438/ijcse/v6i6.162166.

[10] Weber, James E., et al. “Weak Password Security: An Empirical Study.”

Information Security Journal: A Global Perspective, vol. 17, no. 1,
2008, pp. 45–54., doi:10.1080/10658980701824432.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Jakarta, 10 Mei 2021

Shifa Salsabiila - 13519106

https://youtu.be/8UNfnnxyNYc

	I. Introduction
	II. Brute Force Algorithm
	III. Regular Expression
	IV. Dataset Analysis
	V. Password Cracking Methods
	A. Brute Force Attack
	B. Dictionaries

	VI. Suggestions For Password Security
	A. Suggestions for Developers
	B. Suggestions for Internet Users

	VII. Conclusion
	Video Link
	Acknowledgment
	References
	Pernyataan

